Package: WgtEff (via r-universe)

November 4, 2024

Title Functions for Weighting Effects

Version 0.1.2

Description Functions for determining the effect of data weights on
the variance of survey data: users will load a data set which
has a weights column, and the package will calculate the design
effect (DEFF), weighting loss, root design effect (DEFT),
effective sample size (ESS), and/or weighted margin of error.
Imports stats
Depends R (>= 3.5)
License GPL (>= 2)
Encoding UTF-8
LazyData true
RoxygenNote 6.1.1
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Joshua Miller [aut, cre]
Maintainer Joshua Miller < joshlmiller@msn.com>
Date/Publication 2019-06-09 22:30:03 UTC
Repository https://joshlmiller1978.r-universe.dev
RemoteUrl https://github.com/cran/WgtEff
RemoteRef HEAD
RemoteSha 21ea99d9f0c054a3132b7e4232c54de90dc08fd8
Contents
DEFF
DEFT
ESS
FULL
TOLD

2 DEFT 4 Index 7 DEFF Calculate DEFF Description Calculates design effect (DEFF) Usage DEFF(x) **Arguments** = weights vector (name of weights column) Х Value Design effect (DEFF) References Design effect (DEFF) due to weighting \Rightarrow n * (sum(x^2) / sum(x)^2) **Examples** DEFF(testweights\$weights_column) **DEFT** Calculate DEFT Description Calculates root design effect (DEFT) Usage DEFT(x)Arguments = weights vector (name of weights column) Х

ESS 3

Value

Root design effect (DEFT)

References

Root design effect (DEFT) => square root of DEFF

Examples

DEFT(testweights\$weights_column)

ESS

Calculate ESS

Description

Calculates effective sample size (ESS)

Usage

ESS(x)

Arguments

x = weights vector (name of weights column)

Value

Effective sample size (ESS)

References

Effective sample size (ESS) => $sum(x)^2 / sum(x^2)$

Examples

ESS(testweights\$weights_column)

4 MOE

FULL

Calculate Full Statistics

Description

Calculates DEFF, weighting loss, DEFT, ESS, and MOE

Usage

```
FULL(p = 50, conf = 95, N, wtcol)
```

Arguments

p = percentage for which MOE is calculated (optional, default is p = 50)

conf = level of confidence (optional, default is conf = 95)

N = population size (optional, used for finite population correction)

wtcol = Weights vector (name of weights column)

Value

DEFF, weighting loss, DEFT, ESS, and MOE

Examples

```
FULL(N=3000, wtcol=testweights$weights_column)
```

MOE

Calculate MOE

Description

Calculates weighted margin of error (MOE)

Usage

```
MOE(p = 50, conf = 95, N, wtcol)
```

Arguments

p = percentage for which MOE is calculated (optional, default is p = 50)

conf = level of confidence (optional, default is conf = 95)

N = population size (optional, used for finite population correction)

wtcol = Weights vector (name of weights column)

testweights 5

Value

Weighted margin of error (MOE)

References

Weighted margin of error (MOE) => unweighted MOE * DEFT

Examples

```
MOE(N=3000, wtcol=testweights$weights_column)
```

testweights

An example weights column for a data set of 80 cases

Description

An example weights column for a data set of 80 cases

Usage

testweights

Format

A data frame with 80 rows and 1 variable

weights_column data weights

Source

Example data generated by author

WTGLOSS

Calculate weighting loss

Description

Calculates weighting loss

Usage

WTGLOSS(x)

Arguments

x = weights vector (name of weights column)

6 WTGLOSS

Value

Weighting loss

References

Weighting loss => DEFF-1

Examples

WTGLOSS(testweights\$weights_column)

Index

```
* datasets
testweights, 5

DEFF, 2
DEFT, 2

ESS, 3

FULL, 4

MOE, 4

testweights, 5

WTGLOSS, 5
```